Logarithmic Score
scoringrules.logs_beta
logs_beta(
observation: ArrayLike,
a: ArrayLike,
b: ArrayLike,
/,
lower: ArrayLike = 0.0,
upper: ArrayLike = 1.0,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the beta distribution.
This score is equivalent to the negative log likelihood of the beta distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
a
|
ArrayLike
|
First shape parameter of the forecast beta distribution. |
required |
b
|
ArrayLike
|
Second shape parameter of the forecast beta distribution. |
required |
lower
|
ArrayLike
|
Lower bound of the forecast beta distribution. |
0.0
|
upper
|
ArrayLike
|
Upper bound of the forecast beta distribution. |
1.0
|
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between Beta(a, b) and obs. |
Examples:
scoringrules.logs_binomial
logs_binomial(
observation: ArrayLike,
n: ArrayLike,
prob: ArrayLike,
/,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the binomial distribution.
This score is equivalent to the negative log likelihood of the binomial distribution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
n
|
ArrayLike
|
Size parameter of the forecast binomial distribution as an integer or array of integers. |
required |
prob
|
ArrayLike
|
Probability parameter of the forecast binomial distribution as a float or array of floats. |
required |
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between Binomial(n, prob) and obs. |
Examples:
scoringrules.logs_ensemble
logs_ensemble(
observations: ArrayLike,
forecasts: Array,
/,
axis: int = -1,
*,
bw: ArrayLike = None,
backend: Backend = None,
) -> Array
Estimate the Logarithmic score for a finite ensemble via kernel density estimation.
Gaussian kernel density estimation is used to convert the finite ensemble to a mixture of normal distributions, with the component distributions centred at each ensemble member, with scale equal to the bandwidth parameter 'bw'.
The log score for the ensemble forecast is then the log score for the mixture of normal distributions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observations
|
ArrayLike
|
The observed values. |
required |
forecasts
|
Array
|
The predicted forecast ensemble, where the ensemble dimension is by default represented by the last axis. |
required |
axis
|
int
|
The axis corresponding to the ensemble. Default is the last axis. |
-1
|
bw
|
ArrayLike
|
The bandwidth parameter for each forecast ensemble. If not given, estimated using Silverman's rule of thumb. |
None
|
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
Array
|
The LS between the forecast ensemble and obs. |
Examples:
scoringrules.logs_exponential
logs_exponential(
observation: ArrayLike,
rate: ArrayLike,
/,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the exponential distribution.
This score is equivalent to the negative log likelihood of the exponential distribution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
rate
|
ArrayLike
|
Rate parameter of the forecast exponential distribution. |
required |
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between Exp(rate) and obs. |
Examples:
scoringrules.logs_exponential2
logs_exponential2(
observation: ArrayLike,
/,
location: ArrayLike = 0.0,
scale: ArrayLike = 1.0,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the exponential distribution with location and scale parameters.
This score is equivalent to the negative log likelihood of the exponential distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
location
|
ArrayLike
|
Location parameter of the forecast exponential distribution. |
0.0
|
scale
|
ArrayLike
|
Scale parameter of the forecast exponential distribution. |
1.0
|
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between obs and Exp2(location, scale). |
Examples:
scoringrules.logs_2pexponential
logs_2pexponential(
observation: ArrayLike,
scale1: ArrayLike,
scale2: ArrayLike,
location: ArrayLike,
/,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the two-piece exponential distribution.
This score is equivalent to the negative log likelihood of the two-piece exponential distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
scale1
|
ArrayLike
|
First scale parameter of the forecast two-piece exponential distribution. |
required |
scale2
|
ArrayLike
|
Second scale parameter of the forecast two-piece exponential distribution. |
required |
location
|
ArrayLike
|
Location parameter of the forecast two-piece exponential distribution. |
required |
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between 2pExp(sigma1, sigma2, location) and obs. |
Examples:
scoringrules.logs_gamma
logs_gamma(
observation: ArrayLike,
shape: ArrayLike,
/,
rate: ArrayLike | None = None,
*,
scale: ArrayLike | None = None,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the gamma distribution.
This score is equivalent to the negative log likelihood of the gamma distribution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
shape
|
ArrayLike
|
Shape parameter of the forecast gamma distribution. |
required |
rate
|
ArrayLike | None
|
Rate parameter of the forecast gamma distribution. |
None
|
scale
|
ArrayLike | None
|
Scale parameter of the forecast gamma distribution, where |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between obs and Gamma(shape, rate). |
Examples:
Raises:
Type | Description |
---|---|
ValueError
|
If both |
scoringrules.logs_gev
logs_gev(
observation: ArrayLike,
shape: ArrayLike,
/,
location: ArrayLike = 0.0,
scale: ArrayLike = 1.0,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the generalised extreme value (GEV) distribution.
This score is equivalent to the negative log likelihood of the GEV distribution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
shape
|
ArrayLike
|
Shape parameter of the forecast GEV distribution. |
required |
location
|
ArrayLike
|
Location parameter of the forecast GEV distribution. |
0.0
|
scale
|
ArrayLike
|
Scale parameter of the forecast GEV distribution. |
1.0
|
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between obs and GEV(shape, location, scale). |
Examples:
scoringrules.logs_gpd
logs_gpd(
observation: ArrayLike,
shape: ArrayLike,
/,
location: ArrayLike = 0.0,
scale: ArrayLike = 1.0,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the generalised Pareto distribution (GPD).
This score is equivalent to the negative log likelihood of the GPD
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
shape
|
ArrayLike
|
Shape parameter of the forecast GPD distribution. |
required |
location
|
ArrayLike
|
Location parameter of the forecast GPD distribution. |
0.0
|
scale
|
ArrayLike
|
Scale parameter of the forecast GPD distribution. |
1.0
|
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between obs and GPD(shape, location, scale). |
Examples:
scoringrules.logs_hypergeometric
logs_hypergeometric(
observation: ArrayLike,
m: ArrayLike,
n: ArrayLike,
k: ArrayLike,
/,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the hypergeometric distribution.
This score is equivalent to the negative log likelihood of the hypergeometric distribution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
m
|
ArrayLike
|
Number of success states in the population. |
required |
n
|
ArrayLike
|
Number of failure states in the population. |
required |
k
|
ArrayLike
|
Number of draws, without replacement. Must be in 0, 1, ..., m + n. |
required |
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between obs and Hypergeometric(m, n, k). |
Examples:
scoringrules.logs_laplace
logs_laplace(
observation: ArrayLike,
location: ArrayLike = 0.0,
scale: ArrayLike = 1.0,
/,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the Laplace distribution.
This score is equivalent to the negative log likelihood of the Laplace distribution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
Observed values. |
required |
location
|
ArrayLike
|
Location parameter of the forecast laplace distribution. |
0.0
|
scale
|
ArrayLike
|
Scale parameter of the forecast laplace distribution. The LS between obs and Laplace(location, scale). |
1.0
|
scoringrules.logs_loglaplace
logs_loglaplace(
observation: ArrayLike,
locationlog: ArrayLike,
scalelog: ArrayLike,
*,
backend: Backend = None
) -> ArrayLike
Compute the logarithmic score (LS) for the log-Laplace distribution.
This score is equivalent to the negative log likelihood of the log-Laplace distribution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
Observed values. |
required |
locationlog
|
ArrayLike
|
Location parameter of the forecast log-laplace distribution. |
required |
scalelog
|
ArrayLike
|
Scale parameter of the forecast log-laplace distribution. |
required |
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between obs and Loglaplace(locationlog, scalelog). |
Examples:
scoringrules.logs_logistic
logs_logistic(
observation: ArrayLike,
mu: ArrayLike,
sigma: ArrayLike,
/,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the logistic distribution.
This score is equivalent to the negative log likelihood of the logistic distribution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observations
|
Observed values. |
required | |
mu
|
ArrayLike
|
Location parameter of the forecast logistic distribution. |
required |
sigma
|
ArrayLike
|
Scale parameter of the forecast logistic distribution. |
required |
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS for the Logistic(mu, sigma) forecasts given the observations. |
Examples:
scoringrules.logs_loglogistic
logs_loglogistic(
observation: ArrayLike,
mulog: ArrayLike,
sigmalog: ArrayLike,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the log-logistic distribution.
This score is equivalent to the negative log likelihood of the log-logistic distribution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
mulog
|
ArrayLike
|
Location parameter of the log-logistic distribution. |
required |
sigmalog
|
ArrayLike
|
Scale parameter of the log-logistic distribution. |
required |
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between obs and Loglogis(mulog, sigmalog). |
Examples:
scoringrules.logs_lognormal
logs_lognormal(
observation: ArrayLike,
mulog: ArrayLike,
sigmalog: ArrayLike,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the log-normal distribution.
This score is equivalent to the negative log likelihood of the log-normal distribution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
mulog
|
ArrayLike
|
Mean of the normal underlying distribution. |
required |
sigmalog
|
ArrayLike
|
Standard deviation of the underlying normal distribution. |
required |
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between Lognormal(mu, sigma) and obs. |
Examples:
scoringrules.logs_mixnorm
logs_mixnorm(
observation: ArrayLike,
m: ArrayLike,
s: ArrayLike,
/,
w: ArrayLike = None,
axis: ArrayLike = -1,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score for a mixture of normal distributions.
This score is equivalent to the negative log likelihood of the normal mixture distribution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
m
|
ArrayLike
|
Means of the component normal distributions. |
required |
s
|
ArrayLike
|
Standard deviations of the component normal distributions. |
required |
w
|
ArrayLike
|
Non-negative weights assigned to each component. |
None
|
axis
|
ArrayLike
|
The axis corresponding to the mixture components. Default is the last axis. |
-1
|
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between MixNormal(m, s) and obs. |
Examples:
scoringrules.logs_negbinom
logs_negbinom(
observation: ArrayLike,
n: ArrayLike,
/,
prob: ArrayLike | None = None,
*,
mu: ArrayLike | None = None,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the negative binomial distribution.
This score is equivalent to the negative log likelihood of the negative binomial distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
n
|
ArrayLike
|
Size parameter of the forecast negative binomial distribution. |
required |
prob
|
ArrayLike | None
|
Probability parameter of the forecast negative binomial distribution. |
None
|
mu
|
ArrayLike | None
|
Mean of the forecast negative binomial distribution. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between NegBinomial(n, prob) and obs. |
Examples:
Raises:
Type | Description |
---|---|
ValueError
|
If both |
scoringrules.logs_normal
logs_normal(
observation: ArrayLike,
mu: ArrayLike,
sigma: ArrayLike,
/,
*,
negative: bool = True,
backend: Backend = None,
) -> Array
Compute the logarithmic score (LS) for the normal distribution.
This score is equivalent to the (negative) log likelihood (if negative = True
)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
mu
|
ArrayLike
|
Mean of the forecast normal distribution. |
required |
sigma
|
ArrayLike
|
Standard deviation of the forecast normal distribution. |
required |
backend
|
Backend
|
The backend used for computations. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
Array
|
The LS between Normal(mu, sigma) and obs. |
Examples:
scoringrules.logs_2pnormal
logs_2pnormal(
observation: ArrayLike,
scale1: ArrayLike,
scale2: ArrayLike,
location: ArrayLike,
/,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the two-piece normal distribution.
This score is equivalent to the negative log likelihood of the two-piece normal distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observations
|
The observed values. |
required | |
scale1
|
ArrayLike
|
Scale parameter of the lower half of the forecast two-piece normal distribution. |
required |
scale2
|
ArrayLike
|
Scale parameter of the upper half of the forecast two-piece normal distribution. |
required |
location
|
ArrayLike
|
Location parameter of the forecast two-piece normal distribution. |
required |
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between 2pNormal(scale1, scale2, location) and obs. |
Examples:
scoringrules.logs_poisson
logs_poisson(
observation: ArrayLike,
mean: ArrayLike,
/,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the Poisson distribution.
This score is equivalent to the negative log likelihood of the Poisson distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
mean
|
ArrayLike
|
Mean parameter of the forecast poisson distribution. |
required |
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between Pois(mean) and obs. |
Examples:
scoringrules.logs_t
logs_t(
observation: ArrayLike,
df: ArrayLike,
/,
location: ArrayLike = 0.0,
scale: ArrayLike = 1.0,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the Student's t distribution.
This score is equivalent to the negative log likelihood of the t distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
df
|
ArrayLike
|
Degrees of freedom parameter of the forecast t distribution. |
required |
location
|
ArrayLike
|
Location parameter of the forecast t distribution. |
0.0
|
sigma
|
Scale parameter of the forecast t distribution. |
required |
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between t(df, location, scale) and obs. |
Examples:
scoringrules.logs_tlogistic
logs_tlogistic(
observation: ArrayLike,
location: ArrayLike,
scale: ArrayLike,
/,
lower: ArrayLike = float("-inf"),
upper: ArrayLike = float("inf"),
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the truncated logistic distribution.
This score is equivalent to the negative log likelihood of the truncated logistic distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
location
|
ArrayLike
|
Location parameter of the forecast distribution. |
required |
scale
|
ArrayLike
|
Scale parameter of the forecast distribution. |
required |
lower
|
ArrayLike
|
Lower boundary of the truncated forecast distribution. |
float('-inf')
|
upper
|
ArrayLike
|
Upper boundary of the truncated forecast distribution. |
float('inf')
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between tLogistic(location, scale, lower, upper) and obs. |
Examples:
scoringrules.logs_tnormal
logs_tnormal(
observation: ArrayLike,
location: ArrayLike,
scale: ArrayLike,
/,
lower: ArrayLike = float("-inf"),
upper: ArrayLike = float("inf"),
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the truncated normal distribution.
This score is equivalent to the negative log likelihood of the truncated normal distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
location
|
ArrayLike
|
Location parameter of the forecast distribution. |
required |
scale
|
ArrayLike
|
Scale parameter of the forecast distribution. |
required |
lower
|
ArrayLike
|
Lower boundary of the truncated forecast distribution. |
float('-inf')
|
upper
|
ArrayLike
|
Upper boundary of the truncated forecast distribution. |
float('inf')
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between tNormal(location, scale, lower, upper) and obs. |
Examples:
scoringrules.logs_tt
logs_tt(
observation: ArrayLike,
df: ArrayLike,
/,
location: ArrayLike = 0.0,
scale: ArrayLike = 1.0,
lower: ArrayLike = float("-inf"),
upper: ArrayLike = float("inf"),
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the truncated Student's t distribution.
This score is equivalent to the negative log likelihood of the truncated t distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
df
|
ArrayLike
|
Degrees of freedom parameter of the forecast distribution. |
required |
location
|
ArrayLike
|
Location parameter of the forecast distribution. |
0.0
|
scale
|
ArrayLike
|
Scale parameter of the forecast distribution. |
1.0
|
lower
|
ArrayLike
|
Lower boundary of the truncated forecast distribution. |
float('-inf')
|
upper
|
ArrayLike
|
Upper boundary of the truncated forecast distribution. |
float('inf')
|
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between tt(df, location, scale, lower, upper) and obs. |
Examples:
scoringrules.logs_uniform
logs_uniform(
observation: ArrayLike,
min: ArrayLike,
max: ArrayLike,
/,
*,
backend: Backend = None,
) -> ArrayLike
Compute the logarithmic score (LS) for the uniform distribution.
This score is equivalent to the negative log likelihood of the uniform distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observation
|
ArrayLike
|
The observed values. |
required |
min
|
ArrayLike
|
Lower bound of the forecast uniform distribution. |
required |
max
|
ArrayLike
|
Upper bound of the forecast uniform distribution. |
required |
Returns:
Name | Type | Description |
---|---|---|
score |
ArrayLike
|
The LS between U(min, max, lmass, umass) and obs. |
Examples:
Conditional and Censored Likelihood Score
scoringrules.clogs_ensemble
clogs_ensemble(
observations: ArrayLike,
forecasts: Array,
/,
a: ArrayLike = float("-inf"),
b: ArrayLike = float("inf"),
axis: int = -1,
*,
bw: ArrayLike = None,
cens: bool = True,
backend: Backend = None,
) -> Array
Estimate the conditional and censored likelihood score for an ensemble forecast.
The conditional and censored likelihood scores are introduced by Diks et al. (2011):
The weight function is an indicator function of the form \(w(z) = 1\{a < z < b\}\).
The ensemble forecast is converted to a mixture of normal distributions using Gaussian kernel density estimation. The score is then calculated for this smoothed distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observations
|
ArrayLike
|
The observed values. |
required |
forecasts
|
Array
|
The predicted forecast ensemble, where the ensemble dimension is by default represented by the last axis. |
required |
a
|
ArrayLike
|
The lower bound in the weight function. |
float('-inf')
|
b
|
ArrayLike
|
The upper bound in the weight function. |
float('inf')
|
axis
|
int
|
The axis corresponding to the ensemble. Default is the last axis. |
-1
|
bw
|
ArrayLike
|
The bandwidth parameter for each forecast ensemble. If not given, estimated using Silverman's rule of thumb. |
None
|
cens
|
Boolean
|
Boolean specifying whether to return the conditional ('cens = False') or the censored likelihood score ('cens = True'). |
True
|
backend
|
Backend
|
The name of the backend used for computations. Defaults to 'numba' if available, else 'numpy'. |
None
|
Returns:
Name | Type | Description |
---|---|---|
score |
Array
|
The CoLS or CeLS between the forecast ensemble and obs for the chosen weight parameters. |
Examples: