Quantile score
scoringrules.quantile_score
quantile_score(
obs: ArrayLike,
fct: ArrayLike,
alpha: ArrayLike,
backend: Backend | None = None,
) -> Array
Compute the quantile score for a given quantile level.
The quantile score (Koenker, R. and G. Bassett, 1978) is defined as
\[
S_{\alpha}(q_{\alpha}, y) = \begin{cases}
(1 - \alpha) (q_{\alpha} - y), & \text{if } y \leq q_{\alpha}, \\
\alpha (y - q_{\alpha}), & \text{if } y > q_{\alpha}.
\end{cases}
\]
where \(y\) is the observed value and \(q_{\alpha}\) is the predicted value at the \(\alpha\) quantile level.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obs
|
ArrayLike
|
The observed values. |
required |
fct
|
ArrayLike
|
The forecast values. |
required |
alpha
|
ArrayLike
|
The quantile level. |
required |
Returns:
Name | Type | Description |
---|---|---|
score |
Array
|
The quantile score. |
Examples:
Raises:
Type | Description |
---|---|
ValueError
|
If the quantile level is not between 0 and 1. |